View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Carbon/SnO2/carbon core/shell/shell hybrid nanofibers : tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity

      Thumbnail
      Author
      Kong, Junhua
      Liu, Zhaolin
      Yang, Zhengchun
      Tan, Hui Ru
      Xiong, Shanxin
      Wong, Siew Yee
      Li, Xu
      Lu, Xuehong
      Date of Issue
      2012
      School
      School of Materials Science and Engineering
      Abstract
      A carbon/SnO2/carbon core/shell/shell hybrid nanofibrous mat was successfully prepared via single-spinneret electrospinning followed by carbonization and hydrothermal treatment. The morphology and structure of carbon/SnO2/carbon hybrid nanofibers were characterized by field-emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, wide-angle X-ray diffraction and X-ray photoelectron spectroscopy, and their electrochemical properties were studied as an anode in lithium ion batteries (LIBs). It is shown that the designed hybrid nanofibrous mat exhibits excellent electrochemical properties, including high reversible capacity with high columbic efficiency and impressive rate capacity. The greatly enhanced electrochemical performance is mainly due to the morphological stability and reduced diffusion resistance, which are induced by both the carbon core and deposited carbon skin. Furthermore, the embedded and de-aggregated SnO2 nanoparticles in the carbon phase, which are less than 10 nm in size, provide large numbers of reaction sites for lithium ions and ensure complete alloying with them.
      Type
      Journal Article
      Series/Journal Title
      Nanoscale
      Rights
      © 2012 The Royal Society of Chemistry.
      Collections
      • MSE Journal Articles
      http://dx.doi.org/10.1039/c1nr10962f
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG