Please use this identifier to cite or link to this item:
Title: Probabilistic analysis of laterally loaded piles using response surface and neural network approaches
Authors: Chan, Chin Loong
Low, Bak Kong
Issue Date: 2012
Source: Chan, C. L., & Low, B. K. (2012). Probabilistic analysis of laterally loaded piles using response surface and neural network approaches. Computers and Geotechnics, 43, 101-110.
Series/Report no.: Computers and geotechnics
Abstract: The response surface and the neural network methodologies are two approaches that are commonly used in reliability analysis of geotechnical problems with implicit performance functions, to deal with the complexity of probabilistic analyses. This paper proposes a two-step hybrid approach for reliability analysis. The first step obtains the design point using the first-degree polynomial response surface model. The second step constructs a neural network model of the performance function at the design point. The proposed method is first illustrated for a hypothetical laterally-loaded pile with analytical solutions. The case of a laterally-loaded steel pipe pile in Arkansas River sand is then presented, which involves non-normal random variables and spatial autocorrelation of soil strength parameters. Comparisons are made with Monte Carlo simulations incorporating importance sampling. Reliability-based parametric studies are performed on the Arkansas River example using the proposed hybrid approach. The influences on the reliability index and the probability of failure by the lateral load, depth of water table and correlation coefficient between unit weight and friction angle are investigated and discussed.
ISSN: 0266-352X
DOI: 10.1016/j.compgeo.2012.03.001
Rights: © 2012 Elsevier Ltd.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:CEE Journal Articles

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.