dc.contributor.authorGruber, Mathias F.
dc.contributor.authorJohnson, Carl J.
dc.contributor.authorTang, Chuyang Y.
dc.contributor.authorJensen, Mogens H.
dc.contributor.authorYde, Lars
dc.contributor.authorHélix-Nielsen, Claus
dc.date.accessioned2013-07-04T01:43:13Z
dc.date.available2013-07-04T01:43:13Z
dc.date.copyright2012en_US
dc.date.issued2012
dc.identifier.citationGruber, M. F., Johnson, C. J., Tang, C., Jensen, M. H., Yde, L., & Hélix-Nielsen, C. (2012). Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries. Membranes, 2(4), 764-782.en_US
dc.identifier.issn2077-0375en_US
dc.identifier.urihttp://hdl.handle.net/10220/10915
dc.description.abstractIn forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD) model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesMembranesen_US
dc.rights© 2012 The Author(s) (published by MDPI). This paper was published in Membranes and is made available as an electronic reprint (preprint) with permission of The Author(s) (published by MDPI). The paper can be found at the following official DOI: [http://dx.doi.org/10.3390/membranes2040764]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.en_US
dc.titleValidation and analysis of forward osmosis CFD model in complex 3D geometriesen_US
dc.typeJournal Article
dc.contributor.researchSingapore Membrane Technology Centreen_US
dc.contributor.schoolSchool of Civil and Environmental Engineeringen_US
dc.identifier.doihttp://dx.doi.org/10.3390/membranes2040764
dc.description.versionPublished versionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record