dc.contributor.authorChee, Yin Sze
dc.contributor.authorPoh, Hwee Ling
dc.contributor.authorChua, Chun Kiang
dc.contributor.authorŠaněk, Filip
dc.contributor.authorSofer, Zdeněk
dc.contributor.authorPumera, Martin
dc.date.accessioned2013-07-10T02:38:20Z
dc.date.available2013-07-10T02:38:20Z
dc.date.copyright2012en_US
dc.date.issued2012
dc.identifier.citationChee, Y. S., Poh, H. L., Chua, C. K., Šaněk, F., Sofer, Z., Pumera, M. (2012). Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide. Physical Chemistry Chemical Physics, 14(37), 12794-12799.
dc.identifier.urihttp://hdl.handle.net/10220/11084
dc.description.abstractElectrochemical applications of graphene are of very high importance. For electrochemistry, bulk quantities of materials are needed. The most common preparation of bulk quantities of graphene materials is based on oxidation of graphite to graphite oxide and subsequent thermal exfoliation of graphite oxide to thermally reduced graphene oxide (TR-GO). It is important to investigate to which extent a reaction condition, that is, composition of the oxidation mixture and size of graphite materials, influences the properties of the resulting materials. We characterised six graphite materials with a range of particle sizes (0.05, 11, 20, 32, 35 and 41 μm) and the TR-GO products prepared from them by use of scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. Cyclic voltammetric performance of the TR-GO samples was compared using ferro/ferricyanide and ascorbic acid. We observed no correlation between size of initial graphite and properties of the resultant TR-GO such as density of surface defects, amount of oxygen-containing groups, or rate of heterogeneous electron transfer (HET). A positive correspondence between HET rate and high defect density as well as low amounts of oxygen functionalities was noted. Our findings will have profound influence upon practical fabrication of graphene for applications in sensing and energy storage devices.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesPhysical chemistry chemical physicsen_US
dc.rights© 2012 The Owner Societies.en_US
dc.titleInfluence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxideen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doihttp://dx.doi.org/10.1039/C2CP41462G


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record