Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/84787
Title: A visualization metric for dimensionality reduction
Authors: Tsai, Flora S.
Keywords: DRNTU::Engineering::Computer science and engineering
Issue Date: 2011
Series/Report no.: Expert systems with applications
Abstract: Data visualization of high-dimensional data is possible through the use of dimensionality reduction techniques. However, in deciding which dimensionality reduction techniques to use in practice, quantitative metrics are necessary for evaluating the results of the transformation and visualization of the lower dimensional embedding. In this paper, we propose a manifold visualization metric based on the pairwise correlation of the geodesic distance in a data manifold. This metric is compared with other metrics based on the Euclidean distance, Mahalanobis distance, City Block metric, Minkowski metric, cosine distance, Chebychev distance, and Spearman distance. The results of applying different dimensionality reduction techniques on various types of nonlinear manifolds are compared and discussed. Our experiments show that our proposed metric is suitable for quantitatively evaluating the results of the dimensionality reduction techniques if the data lies on an open planar nonlinear manifold. This has practical significance in the implementation of knowledge-based visualization systems and the application of knowledge-based dimensionality reduction methods.
URI: https://hdl.handle.net/10356/84787
http://hdl.handle.net/10220/11109
DOI: http://dx.doi.org/10.1016/j.eswa.2011.08.080
Rights: © 2011 Elsevier Ltd.
metadata.item.grantfulltext: none
metadata.item.fulltext: No Fulltext
Appears in Collections:EEE Journal Articles

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.