dc.contributor.authorTay, Benjamin Chia Meng
dc.contributor.authorChow, Tzu-Hao
dc.contributor.authorNg, Beng Koon
dc.contributor.authorLoh, Thomas Kwok-Seng
dc.date.accessioned2013-07-12T06:13:43Z
dc.date.available2013-07-12T06:13:43Z
dc.date.copyright2012en_US
dc.date.issued2012
dc.identifier.citationTay, B. C. M., Chow, T. H., Ng, B. K., & Loh, T. K. S. (2012). Dual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissues. IEEE Transactions on Biomedical Engineering, 59(9), 2439-2448.en_US
dc.identifier.issn0018-9294en_US
dc.identifier.urihttp://hdl.handle.net/10220/11323
dc.description.abstractThis study investigates the autocorrelation bandwidths of dual-window (DW) optical coherence tomography (OCT) k-space scattering profile of different-sized microspheres and their correlation to scatterer size. A dual-bandwidth spectroscopic metric defined as the ratio of the 10% to 90% autocorrelation bandwidths is found to change monotonically with microsphere size and gives the best contrast enhancement for scatterer size differentiation in the resulting spectroscopic image. A simulation model supports the experimental results and revealed a tradeoff between the smallest detectable scatterer size and the maximum scatterer size in the linear range of the dual-window dual-bandwidth (DWDB) metric, which depends on the choice of the light source optical bandwidth. Spectroscopic OCT (SOCT) images of microspheres and tonsil tissue samples based on the proposed DWDB metric showed clear differentiation between different-sized scatterers as compared to those derived from conventional short-time Fourier transform metrics. The DWDB metric significantly improves the contrast in SOCT imaging and can aid the visualization and identification of dissimilar scatterer size in a sample. Potential applications include the early detection of cell nuclear changes in tissue carcinogenesis, the monitoring of healing tendons, and cell proliferation in tissue scaffolds.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesIEEE transactions on biomedical engineeringen_US
dc.rights© 2012 IEEE.en_US
dc.subjectDRNTU::Engineering::Electrical and electronic engineering
dc.titleDual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissuesen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.identifier.doihttp://dx.doi.org/10.1109/TBME.2012.2202391


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record