Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/95941
Title: Synthesis and characterization of FePt nanoparticles and FePt nanoparticle/SiO2-matrix composite films
Authors: Zhang, Jun-Long
Kong, Ji-Zhou
Li, Ai-Dong
Gong, You-Pin
Guo, Hai-Rong
Yan, Qingyu
Wu, Di
Issue Date: 2010
Source: Zhang, J. L., Kong, J. Z., Li, A. D., Gong, Y. P., Guo, H. R., Yan, Q. Y., et al. (2012). Synthesis and characterization of FePt nanoparticles and FePt nanoparticle/SiO2-matrix composite films. Journal of Sol-Gel Science and Technology, 64(2), 269-275.
Series/Report no.: Journal of sol-gel science and technology
Abstract: Superparamagnetic face-centered cubic (fcc) FePt nanoparticles were synthesized using a polyol process. The effect of reaction temperature and molar ratio of Fe(CO)5 to Pt(acac)2 on the structure, composition and morphology of nanoparticles has been investigated. The optimum processing condition has been obtained for producing well-monodisperse fcc-phase FePt nanoparticles with the 2:1 molar ratio of Fe-Pt at 220 °C. In order to circumvent the problem of FePt particle coalescence during high temperature annealing for the L10 ordering, FePt nanoparticle/SiO2-matrix composite films have been fabricated by sol–gel method. The experimental results confirm that the amorphous SiO2 matrix effectively inhibits the grain growth and particle aggregation during 700 °C annealing for 1 h. Well-monodisperse face-centered tetragonal (fct) FePt particles embedded in the SiO2 matrix can be obtained with the long-range chemical order parameter S of ~0.74, indicating partially ordered L10 phase transition in FePt/SiO2 composite films. The FePt/SiO2 system exhibits a hysteretic behavior with smaller coercive field of 1,450 Oe. The incomplete phase transition from cubic deredat height maxsium (A 1-disordered phase to tetragonal L10-ordered phase) might be responsible for it.
URI: https://hdl.handle.net/10356/95941
http://hdl.handle.net/10220/11421
DOI: 10.1007/s10971-010-2373-8
Rights: © 2010 Springer Science+Business Media, LLC.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MSE Journal Articles

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.