View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Visible light driven photocatalytic hydrogen evolution and photophysical properties of Bi3+ doped NaTaO3

      Thumbnail
      Author
      Kanhere, Pushkar D.
      Zheng, Jianwei
      Chen, Zhong
      Date of Issue
      2011
      School
      School of Materials Science and Engineering
      Abstract
      Visible light active Bismuth doped NaTaO3 powders were synthesized by the conventional solid state route for different Bi concentrations (2.5%, 5.0%, and 7.5% by moles). The optical properties of the doped samples were tuned by changing the molar ratio of Na and Ta in the initial reactants. The doped samples prepared with Na/Ta ratio close to unity (1.01–1.03) resulted in the highest band gap narrowing compared to the other synthesis conditions. It was shown that the photocatalytic hydrogen evolution occurred from these samples under the visible light irradiation (λ > 390 nm) after loading of appropriate amount of platinum co-catalyst. The other synthesis conditions (Na/Ta = 1/1−x; x = 0.025, 0.05, 0.075 and Ta/Na = 1/1−x; x = 0.025, 0.05, 0.075; x is bismuth content) were not useful for the photocatalytic hydrogen evolution. The structural characterization suggested that the samples prepared with Na/Ta ratio close to unity, contain Bi ions located at both Na and Ta sites in the lattice. The Mott–Schottky plots revealed that the flat band potential of the pristine NaTaO3 is highly negative to the H2/H2O reduction potential (−1.19 eV vs. SCE, pH = 7) and for all Bi doped NaTaO3 samples, the flat band potential was sufficient for the hydrogen generation.
      Type
      Journal Article
      Series/Journal Title
      International journal of hydrogen energy
      Rights
      © 2011 Hydrogen Energy Publications, LLC.
      Collections
      • MSE Journal Articles
      http://dx.doi.org/10.1016/j.ijhydene.2011.12.056
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG