Please use this identifier to cite or link to this item:
Title: Integrating historical noisy answers for improving data utility under differential privacy
Authors: Bhowmick, Sourav S.
Chen, Shixi
Zhou, Shuigeng
Issue Date: 2012
Source: Chen, S., Zhou, S., & Bhowmick, S. S. (2012). Integrating historical noisy answers for improving data utility under differential privacy. Proceedings of the 15th International Conference on Extending Database Technology.
Abstract: Differential privacy is a robust principle for privacy preserving data analysis tasks, and has been successfully applied to a variety of applications. However, the number of queries that can be answered is limited for preventing privacy disclosure. Once the privacy budget is exhausted, all succeeding queries must be rejected. Therefore, each of the historical query answers is valuable and it is important to exploit them together to learn more about the data. We propose to integrate all available linear query answers into a consistent form that embodies our knowledge learned from the noisy answers, obtaining more accurate answers to past queries and even new queries, improving the data utility. Two distinct approaches are developed for this purpose, one via principle component analysis, and another via maximum entropy method. The second approach also generates a synthetic database, which is useful for differentially private data publishing. One important goal of our work is to ensure that the running time of our approaches does not grow with the cardinality of the universe of a data tuple, so that high-dimensional data with very large domain can still be tackled efficiently.
DOI: 10.1145/2247596.2247605
Rights: © 2012 ACM.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCSE Conference Papers

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.