View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Conference Papers
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Conference Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      A model-based approach to attributed graph clustering

      Thumbnail
      Author
      Xu, Zhiqiang
      Ke, Yiping
      Wang, Yi
      Cheng, Hong
      Cheng, James
      Date of Issue
      2012
      Conference Name
      International Conference on Management of Data (2012)
      School
      School of Computer Engineering
      Abstract
      Graph clustering, also known as community detection, is a long-standing problem in data mining. However, with the proliferation of rich attribute information available for objects in real-world graphs, how to leverage structural and attribute information for clustering attributed graphs becomes a new challenge. Most existing works take a distance-based approach. They proposed various distance measures to combine structural and attribute information. In this paper, we consider an alternative view and propose a model-based approach to attributed graph clustering. We develop a Bayesian probabilistic model for attributed graphs. The model provides a principled and natural framework for capturing both structural and attribute aspects of a graph, while avoiding the artificial design of a distance measure. Clustering with the proposed model can be transformed into a probabilistic inference problem, for which we devise an efficient variational algorithm. Experimental results on large real-world datasets demonstrate that our method significantly outperforms the state-of-art distance-based attributed graph clustering method.
      Subject
      DRNTU::Engineering::Computer science and engineering
      Type
      Conference Paper
      Collections
      • SCSE Conference Papers
      http://dx.doi.org/10.1145/2213836.2213894
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG