Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/98919
Title: Adaptive data refinement for parallel dynamic programming applications
Authors: Tang, Shanjiang
Yu, Ce
Lee, Bu-Sung
Sun, Chao
Sun, Jizhou
Keywords: DRNTU::Engineering::Computer science and engineering
Issue Date: 2012
Abstract: Load balancing is a challenging work for parallel dynamic programming due to its intrinsically strong data dependency. Two issues are mainly involved and equally important, namely, the partitioning method as well as scheduling and distribution policy of subtasks. However, researchers take into account their load balancing strategies primarily from the aspect of scheduling and allocation policy, while the partitioning approach is roughly considered. In this paper, an adaptive data refinement scheme is proposed. It is based on our previous work of DAG Data Driven Model. It can spawn more new computing subtasks during the execution by repartitioning the current block of task into smaller ones if the workload unbalance is detected. The experiment shows that it can dramatically improve the performance of system. Moreover, in order to substantially evaluate the quality of our method, a theoretic upper bound of improvable space for parallel dynamic programming is given. The experimental result in comparison with theoretical analysis clearly shows the fairly good performance of our approach.
URI: https://hdl.handle.net/10356/98919
http://hdl.handle.net/10220/12770
DOI: http://dx.doi.org/10.1109/IPDPSW.2012.274
metadata.item.grantfulltext: none
metadata.item.fulltext: No Fulltext
Appears in Collections:SCSE Conference Papers

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.