View Item 
      •   Home
      • 1. Schools
      • College of Science
      • School of Biological Sciences (SBS)
      • SBS Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Science
      • School of Biological Sciences (SBS)
      • SBS Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Supramolecular organization in self-assembly of chromatin and cationic lipid bilayers is controlled by membrane charge density

      Thumbnail
      Author
      Berezhnoy, Nikolay V.
      Lundberg, Dan
      Korolev, Nikolay
      Lu, Chenning
      Yan, Jiang
      Miguel, Maria
      Lindman, Björn
      Nordenskiöld, Lars
      Date of Issue
      2012
      School
      School of Biological Sciences
      Abstract
      In this work we have investigated the structures of aggregates formed in model systems of dilute aqueous mixtures of “model chromatin” consisting of either recombinant nucleosome core particles (NCPs) or nucleosome arrays consisting of 12 NCPs connected with 30 bp linker DNA, and liposomes made from different mixtures of cationic and zwitterionic lipids, 1,2-dioleoyl-3-trimethylammonium-propane chloride salt (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The aggregates formed were characterized using different optical microscopy methods and small-angle X-ray scattering (SAXS), and the results are discussed in terms of the competing intermolecular interactions among the components. For a majority of the samples, the presence of lamellar structures could be identified. In samples with high fractions of DOTAP in the liposomes, well-defined lamellar structures very similar to those formed by the corresponding lipid mixtures and DNA alone (i.e., without histone proteins) were observed; in these aggregates, the histones are expelled from the model chromatin. The findings suggest that, with liposomes containing large fractions of cationic lipid, the dominating driving force for aggregation is the increase in translational entropy from the release of counterions, whereas with lower fractions of the cationic lipid, the entropy of mixing of the lipids within the bilayers results in a decreased DNA–lipid attraction.
      Type
      Journal Article
      Series/Journal Title
      Biomacromolecules
      Collections
      • SBS Journal Articles
      http://dx.doi.org/10.1021/bm301436x
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG