Please use this identifier to cite or link to this item:
Title: Image classification using HTM cortical learning algorithms
Authors: Zhuo, Wen
Cao, Zhiguo
Qin, Yueming
Yu, Zhenghong
Xiao, Yang
Keywords: DRNTU::Engineering::Computer science and engineering
Issue Date: 2012
Abstract: Recently the improved bag of features (BoF) model with locality-constrained linear coding (LLC) and spatial pyramid matching (SPM) achieved state-of-the-art performance in image classification. However, only adopting SPM to exploit spatial information is not enough for satisfactory performance. In this paper, we use hierarchical temporal memory (HTM) cortical learning algorithms to extend this LLC & SPM based model. HTM regions consist of HTM cells are constructed to spatial pool the LLC codes. Each cell receives a subset of LLC codes, and adjacent subsets are overlapped so that more spatial information can be captured. Additionally, HTM cortical learning algorithms have two processes: learning phase which make the HTM cell only receive most frequent LLC codes, and inhibition phase which ensure that the output of HTM regions is sparse. The experimental results on Caltech 101 and UIUC-Sport dataset show the improvement on the original LLC & SPM based model.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCSE Conference Papers

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.