Please use this identifier to cite or link to this item:
Title: Mechanism of secondary currents in open channel flows
Authors: Yang, Shu-Qing
Tan, Soon Keat
Wang, Xi-Kun
Issue Date: 2012
Source: Yang, S.-Q., Tan, S. K., & Wang, X.-K. (2012). Mechanism of secondary currents in open channel flows. Journal of Geophysical Research: Earth Surface, 117(F4).
Series/Report no.: Journal of geophysical research: earth surface
Abstract: This paper describes the conditions for initiation and maintenance of secondary currents in open channel flows. By analyzing the Reynolds equation in the wall-normal and wall-tangent directions, this study reveals that, like other types of vortices, the secondary currents are originated in the near-boundary region, and the magnitude (or strength) of secondary flow is proportional to the lateral gradient of near-wall velocity. The near-wall secondary flow always moves from the region with lower velocity (or lower boundary shear stress) to the location with higher velocity (or higher boundary shear stress). Subsequently, the near-boundary secondary flow creeps into the main flow and drives circulation within a region enclosed by lines of zero total shear stress, leading to anisotropy of turbulence in the main flow region. This paper also discusses typical secondary currents in open channel flows and presents the relationship between sediment transport and secondary currents. The formation of sand ridges widely observed on the Earth surface is explained in the light of the proposed relationship.
ISSN: 0148-0227
Rights: © 2012 American Geophysical Union. This paper was published in Journal of Geophysical Research: Earth Surface and is made available as an electronic reprint (preprint) with permission of American Geophysical Union. The paper can be found at the following official DOI: [ 10.1029/2012JF002510]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:CEE Journal Articles

Files in This Item:
File Description SizeFormat 
Mechanism of secondary currents in open channel flows.pdf608.46 kBAdobe PDFThumbnail

Google ScholarTM



Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.