Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/96885
Title: Scalar field cosmology : I. asymptotic freedom and the initial-value problem
Authors: Huang, Kerson.
Low, Hwee-Boon.
Tung, Roh-Suan.
Keywords: DRNTU::Science::Astronomy::Astrophysics
Issue Date: 2012
Source: Huang, K., Low, H. B.,& Tung, R. S. (2012). Scalar field cosmology: I. Asymptotic freedom and the initial-value problem. Classical and Quantum Gravity, 29(15).
Series/Report no.: Classical and quantum gravity
Abstract: The purpose of this work is to use a renormalized quantum scalar field to investigate very early cosmology, in the Planck era immediately following the big bang. Renormalization effects make the field potential dependent on length scale, and are important during the big bang era. We use the asymptotically free Halpern-Huang scalar field, which is derived from renormalization-group analysis, and solve Einsteins equation with Robertson-Walker metric as an initial-value problem. The main prediction is that the Hubble parameter follows a power law: H ≡ a/a ∼ t -p, and the universe expands at an accelerated rate: a ∼ expt 1-p. This gives dark energy, with an equivalent cosmological constant that decays in time like t -2p, which avoids the fine-tuning problem. The power law predicts a simple relation for the galactic redshift. Comparison with data leads to the speculation that the universe experienced a crossover transition, which was completed about seven billion years ago.
URI: https://hdl.handle.net/10356/96885
http://hdl.handle.net/10220/13054
DOI: 10.1088/0264-9381/29/15/155014
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:IAS Journal Articles

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.