View Item 
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      The robust estimation method for a finite mixture of Poisson mixed-effect models

      Thumbnail
      Author
      Xiang, Liming
      Yau, Kelvin K. W.
      Lee, Andy H.
      Date of Issue
      2012
      School
      School of Physical and Mathematical Sciences
      Abstract
      When analyzing clustered count data derived from several latent subpopulations, the finite mixture of the Poisson mixed-effect model is an immediate strategy to model the underlying heterogeneity. Within the generalized linear mixed model framework, parameters in such a model are often estimated through the residual maximum likelihood estimation approach. However, the method is vulnerable to outliers. To develop robust estimators, the minimum Hellinger distance (MHD) estimation approach has been proposed by Xiang et al. (Xiang, L., Yau, K.K.W., Lee, A.H., Hui, Y.V., 2008. Minimum Hellinger distance estimation for k-component Poisson mixture with random effects. Biometrics 64, 508–518) with the random effects following a normal distribution. In some circumstances, there is little information available on the joint distributional form of the random effects. Without prescribing a parametric form for the random effects distribution, we consider embedding the non-parametric maximum likelihood (NPML) approach within the MHD estimation to extend the robust estimation method for a finite mixture of Poisson mixed-effect models. The NPML estimation not only avoids the problem of numerical integration in deriving the MHD estimating equations, but also enhances the robustness characteristic because of its resistance to possible misspecification of the parametric distribution for the random effects. The performance of the new method is evaluated and compared with that of the existing MHD estimation using simulations. Application to analyze a real data set of recurrent urinary tract infections is illustrated.
      Type
      Journal Article
      Series/Journal Title
      Computational statistics & data analysis
      Collections
      • SPMS Journal Articles
      http://dx.doi.org/10.1016/j.csda.2011.12.006
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG