View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Transient growth of flow disturbances in triggering a Rijke tube combustion instability

      Thumbnail
      Author
      Zhao, Dan
      Date of Issue
      2012
      School
      School of Mechanical and Aerospace Engineering
      Abstract
      Combustion instabilities in a Rijke tube could be triggered by the transient growth of flow disturbances, which is associated with its non-normality. In this work, a Rijke tube with three different temperature configurations resulting from a laminar premixed flame are considered to investigate its non-normality and the resulting transient growth of flow disturbances in triggering combustion instabilities. For this, a general thermoacoustic model of a Rijke tube is developed. Unsteady heat release from the flame is assumed to be caused by its surface variations, which results from the fluctuations of the oncoming flow velocity. Coupling the flame model with a Galerkin series expansion of the acoustic waves present enables the time evolution of flow disturbances to be calculated, thus providing a platform on which to gain insights on the Rijke tube stability behaviors. Both eigenmodes orthogonality analysis and transient growth analysis of flow disturbances are performed by linearizing the flame model and recasting it into the classical time-lag N-τ formulation. It is shown from both analyses that Rijke tube is a non-normal thermoacoustic system and its non-normality depends strongly on the temperature configurations and the flame position. Furthermore, the most ‘dangerous’ position at which the flame is more susceptible to combustion instabilities are predicted by real-time calculating the maximum transient growth rate of acoustical energy.
      Type
      Journal Article
      Series/Journal Title
      Combustion and flame
      Collections
      • MAE Journal Articles
      http://dx.doi.org/10.1016/j.combustflame.2012.02.002
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG