Please use this identifier to cite or link to this item:
Title: Modelling 3D control of upright stance using an optimal control strategy
Authors: Qu, Xingda
Nussbaum, Maury A.
Issue Date: 2012
Source: Qu, X.,& Nussbaum, M. A. (2012). Modelling 3D control of upright stance using an optimal control strategy. Computer Methods in Biomechanics and Biomedical Engineering, 15(10), 1053-1063.
Series/Report no.: Computer methods in biomechanics and biomedical engineering
Abstract: A 3D balance control model of quiet upright stance is presented, based on an optimal control strategy, and evaluated in terms of its ability to simulate postural sway in both the anterior–posterior and medial–lateral directions. The human body was represented as a two-segment inverted pendulum. Several assumptions were made to linearise body dynamics, for example, that there was no transverse rotation during upright stance. The neural controller was presumed to be an optimal controller that generates ankle control torque and hip control torque according to certain performance criteria. An optimisation procedure was used to determine the values of unspecified model parameters including random disturbance gains and sensory delay times. This model was used to simulate postural sway behaviours characterised by centre-of-pressure (COP)-based measures. Confidence intervals for all normalised COP-based measures contained unity, indicating no significant differences between any of the simulated COP-based measures and corresponding experimental references. In addition, mean normalised errors for the traditional measures were < 8%, and those for most statistical mechanics measures were 3–66%. On the basis these results, the proposed 3D balance control model appears to have the ability to accurately simulate 3D postural sway behaviours.
DOI: 10.1080/10255842.2011.570339
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MAE Journal Articles

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.