dc.contributor.authorWu, Hao
dc.contributor.authorTang, Lihua
dc.contributor.authorAvvari, Panduranga Vittal
dc.contributor.authorYang, Yaowen
dc.contributor.authorSoh, Chee Kiong
dc.date.accessioned2013-08-26T06:52:02Z
dc.date.available2013-08-26T06:52:02Z
dc.date.copyright2013en_US
dc.date.issued2013
dc.identifier.citationWu, H., Tang, L., Avvari, P. V., Yang, Y., & Soh, C. K. (2013). Broadband energy harvesting using nonlinear 2-DOF configuration. Proceeding of SPIE, Active and Passive Smart Structures and Integrated Systems 2013, 86880B.en_US
dc.identifier.urihttp://hdl.handle.net/10220/13230
dc.description.abstractVibration energy harvesting using piezoelectric material has received great research interest in the recent years. To enhance the performance of piezoelectric energy harvesters, one important concern is to increase their operating bandwidth. Various techniques have been proposed for broadband energy harvesting, such as the resonance tuning approach, the frequency up-conversion technique, the multi-modal harvesting and the nonlinear technique. Usually, a nonlinear piezoelectric energy harvester can be easily developed by introducing a magnetic field. Either mono-stable or bi-stable response can be achieved using different magnetic configurations. However, most of the research work for nonlinear piezoelectric energy harvesting has focused on the SDOF cantilever beam. A recently reported linear 2-DOF harvester can achieve two close resonant frequencies with significant power outputs. However, for this linear configuration, although a broader bandwidth can be achieved, there exists a deep valley in-between the two response peaks. The presence of the valley will greatly deteriorate the performance of the energy harvester. To overcome this limitation, a nonlinear 2-DOF piezoelectric energy harvester is proposed in this article. This nonlinear harvester is developed from its linear counterpart by incorporating a magnetic field using a pair of magnets. Experimental parametric study is carried out to investigate the behavior of such harvester. With different configurations, both mono-stable and bi-stable behaviors are observed and studied. An optimal configuration of the nonlinear harvester is thus obtained, which can achieve significantly wider bandwidth than the linear 2-DOF harvester and at the same time overcome its limitation.en_US
dc.language.isoenen_US
dc.rights© 2013 SPIE. This paper was published in Proceeding of SPIE, Active and Passive Smart Structures and Integrated Systems 2013 and is made available as an electronic reprint (preprint) with permission of SPIE. The paper can be found at the following official DOI: [http://dx.doi.org/10.1117/12.2009100].  One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.en_US
dc.titleBroadband energy harvesting using nonlinear 2-DOF configurationen_US
dc.typeConference Paper
dc.contributor.conferenceActive and Passive Smart Structures and Integrated Systems (2013 : San Diego, California, USA)en_US
dc.contributor.schoolSchool of Civil and Environmental Engineeringen_US
dc.identifier.doihttp://dx.doi.org/10.1117/12.2009100
dc.description.versionPublished versionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record