Please use this identifier to cite or link to this item:
Title: Human gait recognition using patch distribution feature and locality-constrained group sparse representation
Authors: Xu, Dong
Huang, Yi
Zeng, Zinan
Xu, Xinxing
Keywords: DRNTU::Engineering::Computer science and engineering::Computing methodologies::Image processing and computer vision
Issue Date: 2011
Source: Xu, D., Huang, Y., Zeng, Z., & Xu, X. (2011). Human gait recognition using patch distribution feature and locality-constrained group sparse representation. IEEE transactions on image processing, 21(1), 316-326.
Series/Report no.: IEEE transactions on image processing
Abstract: In this paper, we propose a new patch distribution feature (PDF) (i.e., referred to as Gabor-PDF) for human gait recognition. We represent each gait energy image (GEI) as a set of local augmented Gabor features, which concatenate the Gabor features extracted from different scales and different orientations together with the X-Y coordinates. We learn a global Gaussian mixture model (GMM) (i.e., referred to as the universal background model) with the local augmented Gabor features from all the gallery GEIs; then, each gallery or probe GEI is further expressed as the normalized parameters of an image-specific GMM adapted from the global GMM. Observing that one video is naturally represented as a group of GEIs, we also propose a new classification method called locality-constrained group sparse representation (LGSR) to classify each probe video by minimizing the weighted l1, 2 mixed-norm-regularized reconstruction error with respect to the gallery videos. In contrast to the standard group sparse representation method that is a special case of LGSR, the group sparsity and local smooth sparsity constraints are both enforced in LGSR. Our comprehensive experiments on the benchmark USF HumanID database demonstrate the effectiveness of the newly proposed feature Gabor-PDF and the new classification method LGSR for human gait recognition. Moreover, LGSR using the new feature Gabor-PDF achieves the best average Rank-1 and Rank-5 recognition rates on this database among all gait recognition algorithms proposed to date.
ISSN: 1057-7149
Rights: © 2011 IEEE
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCSE Journal Articles

Google ScholarTM



Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.