dc.contributor.authorLiu, Ya-Juan.
dc.contributor.authorSun, Darren Delai
dc.date.accessioned2013-09-23T08:41:46Z
dc.date.available2013-09-23T08:41:46Z
dc.date.copyright2012en_US
dc.date.issued2012
dc.identifier.citationLiu, Y. J.,& Sun, D. D. (2012). Membrane fouling mechanism in dead-end microfiltration of denitrifying granular sludge mixed liquors developed in SBRs at different calcium concentrations. Journal of Membrane Science, 39674-82.en_US
dc.identifier.urihttp://hdl.handle.net/10220/13615
dc.description.abstractThis study investigated membrane fouling mechanisms of various fractions of denitrifying granular sludge mixed liquors developed in three sequencing batch reactors (SBRs) operated at respective calcium concentrations of 0, 50 and 100 mg/L. Results showed that supernatants caused the lower fluxes and more severe membrane fouling than their corresponding mixed liquors and granule solutions, indicating supernatants were the major contributors to membrane fouling in microfiltration of granular sludge mixed liquors. Cake layer formed by denitrifying granules on membrane surface was observed to serve as a prefilter which could reduce membrane fouling effectively by entrapping fine particles, colloids and soluble extracellular polymeric substances (sEPS). Such observation was further confirmed by the fact that cake, specific cake and total resistances of mixed liquors all decreased with increase of granule concentrations from 0 to 5000 mg SS/L, and remained unchanged when granule concentrations were further increased to 13,000 mg SS/L. The resistances of granular sludge mixed liquors were increased with concentrations of fine particle, colloid and sEPS in supernatant when granule concentration was kept constant. It was also revealed that the supplementation of calcium of 100 mg/L in granulation process could greatly reduce the contents of fine particles, colloids and sEPS, leading to less membrane fouling.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesJournal of membrane scienceen_US
dc.titleMembrane fouling mechanism in dead-end microfiltration of denitrifying granular sludge mixed liquors developed in SBRs at different calcium concentrationsen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Civil and Environmental Engineeringen_US
dc.identifier.doihttp://dx.doi.org/10.1016/j.memsci.2011.12.049


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record