View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Human action recognition using a fast learning fully complex-valued classifier

      Thumbnail
      Author
      Venkatesh Babu, R.
      Suresh, Sundaram
      Savitha, R.
      Date of Issue
      2012
      School
      School of Computer Engineering
      Abstract
      In this paper, we use optical flow based complex-valued features extracted from video sequences to recognize human actions. The optical flow features between two image planes can be appropriately represented in the Complex plane. Therefore, we argue that motion information that is used to model the human actions should be represented as complex-valued features and propose a fast learning fully complex-valued neural classifier to solve the action recognition task. The classifier, termed as, “fast learning fully complex-valued neural (FLFCN) classifier” is a single hidden layer fully complex-valued neural network. The neurons in the hidden layer employ the fully complex-valued activation function of the type of a hyperbolic secant function. The parameters of the hidden layer are chosen randomly and the output weights are estimated as the minimum norm least square solution to a set of linear equations. The results indicate the superior performance of FLFCN classifier in recognizing the actions compared to real-valued support vector machines and other existing results in the literature. Complex valued representation of 2D motion and orthogonal decision boundaries boost the classification performance of FLFCN classifier.
      Subject
      DRNTU::Engineering::Computer science and engineering
      Type
      Journal Article
      Series/Journal Title
      Neurocomputing
      Collections
      • SCSE Journal Articles
      http://dx.doi.org/10.1016/j.neucom.2012.03.003
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG