View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Meta-cognitive neural network for classification problems in a sequential learning framework

      Thumbnail
      Author
      Sateesh Babu, Giduthuri
      Suresh, Sundaram
      Date of Issue
      2011
      School
      School of Computer Engineering
      Abstract
      In this paper, we propose a sequential learning algorithm for a neural network classifier based on human meta-cognitive learning principles. The network, referred to as Meta-cognitive Neural Network (McNN). McNN has two components, namely the cognitive component and the meta-cognitive component. A radial basis function network is the fundamental building block of the cognitive component. The meta-cognitive component controls the learning process in the cognitive component by deciding what-to-learn, when-to-learn and how-to-learn. When a sample is presented at the cognitive component of McNN, the meta-cognitive component chooses the best learning strategy for the sample using estimated class label, maximum hinge error, confidence of classifier and class-wise significance. Also sample overlapping conditions are considered in growth strategy for proper initialization of new hidden neurons. The performance of McNN classifier is evaluated using a set of benchmark classification problems from the UCI machine learning repository and two practical problems, viz., the acoustic emission for signal classification and a mammogram data set for cancer classification. The statistical comparison clearly indicates the superior performance of McNN over reported results in the literature.
      Subject
      DRNTU::Engineering::Computer science and engineering
      Type
      Journal Article
      Series/Journal Title
      Neurocomputing
      Collections
      • SCSE Journal Articles
      http://dx.doi.org/10.1016/j.neucom.2011.12.001
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG