View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Large deformation measurement scheme for 3D digital image correlation method

      Thumbnail
      Author
      Tang, Zhengzong
      Liang, Jin
      Xiao, Zhenzhong
      Guo, Cheng
      Date of Issue
      2011
      School
      School of Mechanical and Aerospace Engineering
      Abstract
      Difficulties often arise for digital image correlation (DIC) technique when serious de-correlation occurs between the reference image and the deformed image due to large deformation. An updating reference image scheme could be employed to deal with large deformation situation, however that will introduce accumulated errors. A large deformation measurement scheme, combining improved coarse search method and updating reference image scheme, is proposed in this paper. For a series of deformation images, the correlation calculation begins with a seed point and spreads out. An improved coarse search method is developed to calculate the initial correlation parameters for the seed point, which guarantees that the correlation calculation can be carried out successfully even in large deformation situation. Only for extremely large deformation, the reference image is updated. Using this method, not only extremely large deformation can be measured successfully but also the accumulated error could be controlled. A polymer material tensile test and a foam compression test are used to verify the proposed scheme. Experimental results show that up to 450% tensile deformation and 83% compression deformation can be measured successfully.
      Type
      Journal Article
      Series/Journal Title
      Optics and lasers in engineering
      Collections
      • MAE Journal Articles
      http://dx.doi.org/10.1016/j.optlaseng.2011.09.018
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG