View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Conference Papers
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Conference Papers
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      A 9.87 nW 1 kS/s 8.7 ENOB SAR ADC for implantable epileptic seizure detection microsystems

      Thumbnail
      Author
      Do, Anh Tuan
      Lam, Chun Kit
      Tan, Yung Sern
      Yeo, Kiat Seng
      Cheong, Jia Hao
      Yao, Lei
      Tan, Meng Tong
      Je, Minkyu
      Date of Issue
      2012
      Conference Name
      IEEE Asia Pacific Conference on Circuits and Systems (2012 : Kaohsiung, Taiwan)
      School
      School of Electrical and Electronic Engineering
      Abstract
      This paper presents an ultra low-power SAR ADC in 0.18 μm CMOS technology for epileptic seizure detection applications. The ADC is powered by a single supply voltage of both analog and digital circuits to avoid using the level-shifters. A latched comparator is used to quickly generate the comparison results while consuming no DC current. Split-cap architecture with an attenuation cap is used to minimize area and to further reduce the power consumption. A smaller-than-unit capacitor is used at the end of the least significant bit array to mitigate the negative impact of the parasitic components on the linearity of the capacitors array. As a result, both DNL/INL and SNDR of the ADC is improved. Our post-layout simulation shows that at 1 V supply, 1 kS/s the proposed SAR archives 8.7 ENOB while consuming only 9.87 nW. This yields an FOM of 23.7 fJ/conversion-step. Its leakage power consumption is 1.46 nW.
      Subject
      DRNTU::Engineering::Electrical and electronic engineering
      Type
      Conference Paper
      Collections
      • EEE Conference Papers
      http://dx.doi.org/10.1109/APCCAS.2012.6418956
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG