Please use this identifier to cite or link to this item:
Title: Molecular communication model through gap junction channel with selective permeabilities
Authors: Yang, Yiqun
Yeo, Chai Kiat
Keywords: DRNTU::Engineering::Computer science and engineering
Issue Date: 2012
Source: Yang, Y., & Yeo, C. K. (2012). Molecular communication model through gap junction channel with selective permeabilities. 2012 18th IEEE International Conference on Networks (ICON), pp.256-261.
Abstract: With rapid development in biological and nano areas, new communication methods promise novel solutions for various research issues. Due to the simple structure and the limited size of nanomachines, nanonetworks have conspicuous differences from traditional networks. Hence exploratory analysis and theory are expected. Molecular communication, which involves biological components in nanoscale, provides a more compatible approach to medical, environmental and agricultural research. Calcium ion (Ca2+), which is one of the most important universal second messengers in vivo cells, participates actively in the regulation of cellular activities. In this paper, we model the molecular communication system through gap junction channels. We present simulation results for patterned cells with different permeabilities. We analyze the propagation characteristics of intercellular calcium waves which are induced by the diffusion of inositol (l, 4, 5)-trisphosphate (IP3).
DOI: 10.1109/ICON.2012.6506566
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCSE Conference Papers

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.