View Item 
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Thrombin aptasensing with inherently electroactive graphene oxide nanoplatelets as labels

      Thumbnail
      Author
      Loo, Adeline Huiling
      Bonanni, Alessandra
      Pumera, Martin
      Date of Issue
      2013
      School
      School of Physical and Mathematical Sciences
      Abstract
      Graphene and its associated materials are commonly used as the transducing platform in biosensing. We propose a different approach for the application of graphene in biosensing. Here, we utilized graphene oxide nanoplatelets as the inherently electroactive labels for the aptasensing of thrombin. The basis of detection lies in the ability of graphene oxide to be electrochemically reduced, thereby providing a well-defined reduction wave; one graphene oxide nanoplatelet of dimension 50 × 50 nm can provide a reduction signal by accepting ~22 000 electrons. We demonstrate that by using graphene oxide nanoplatelets as an inherently electroactive label, we can detect thrombin in the concentration range of 3 pM–0.3 μM, with good selectivity of the aptamer towards interferences by bovine serum albumin, immunoglobulin G and avidin. Therefore, the inherently electroactive graphene oxide nanoplatelets are a material which can serve as an electroactive label, in a manner similar to metallic nanoparticles.
      Subject
      DRNTU::Engineering::Nanotechnology
      Type
      Journal Article
      Series/Journal Title
      Nanoscale
      Collections
      • SPMS Journal Articles
      http://dx.doi.org/10.1039/c3nr00511a
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG