Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/99279
Title: Localized sclerotic bone response demonstrated reduced nanomechanical creep properties
Authors: Chen, Xiuli
Goh, James Cho Hong
Teoh, Swee-Hin
De, Shamal Das
Soong, Richie
Lee, Taeyong
Keywords: DRNTU::Engineering::Bioengineering
Issue Date: 2012
Source: Chen, X., Goh, J. C. H., Teoh, S.-H., De, S. D., Soong, R., & Lee, T. (2013). Localized sclerotic bone response demonstrated reduced nanomechanical creep properties. Journal of the mechanical behavior of biomedical materials, 17, 198-208.
Series/Report no.: Journal of the mechanical behavior of biomedical materials
Abstract: Sclerosis (tissue hardening) development is a common occurrence in slow growing or benign osteolytic lesions. However, there is lack of knowledge on the mechanical and material property changes associated with sclerotic bone response. The immune system is postulated to play a relevant role in evoking sclerotic bone responses. In this study, localized sclerotic response in an immunocompetent model of Walker 256 breast carcinoma in SD rats showed an apparent increase in new reactive bone formation. Sclerotic rat femurs had significant increases in bone mineral density (BMD), bone mineral content (BMC), bone volume fraction (BV/TV), bone surface density (BS/TV), trabecular number (Tb.N) and a significant decrease in trabecular separation (Tb.Sp) and structural model index (SMI) as compared to control rat femurs. Significantly reduced creep responses (increased η) were observed for both trabecular and cortical bone in sclerotic bones while no significant difference was observed in elastic modulus (E) and hardness (H) values. Therefore, we conclude that viscoelastic creep property using nanoindentation would serve as a more sensitive indicator of localized bone modeling than elastic properties. Moreover, reduced viscoelasticity can contribute towards increased microcrack propagation and therefore reduced toughness. Since significant positive correlations between elastic properties (E) and (H) with viscosity (η) were also observed, our results indicate that sclerotic response of bone metastasis would cause reduced toughness (increased η) with stiffening of material (increased E and H).
URI: https://hdl.handle.net/10356/99279
http://hdl.handle.net/10220/17315
ISSN: 1751-6161
DOI: http://dx.doi.org/10.1016/j.jmbbm.2012.09.002
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCBE Journal Articles

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.