View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Growth of tapered SiC nanowires on flexible carbon fabric : toward field emission applications

      Thumbnail
      Author
      Wu, Renbing
      Zhou, Kun
      Wei, Jun
      Huang, Yizhong
      Su, Fei
      Chen, Jianjun
      Wang, Liuying
      Date of Issue
      2012
      School
      School of Materials Science and Engineering
      School of Mechanical and Aerospace Engineering
      Research Centre
      Singapore Institute of Manufacturing Technology
      Abstract
      Tapered silicon carbide (SiC) nanowires were directly grown on the surface of flexible carbon fabric by a chemical vapor deposition process. The products were systemically characterized by X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electronic diffraction, and energy-dispersive X-ray spectroscopy. The results revealed that the tapered nanowires were of single crystalline β-SiC phase with the growth direction along [111] and had a feature of zigzag faceting over the wire surfaces. Such faceting was created by a quasi-periodic placement of twinning boundaries along the wire axis, which can be explained by surface energy minimization during the growth process. Based on the characterizations and thermodynamics analysis, the Fe-assisted vapor–liquid–solid (VLS) growth mechanism of tapered SiC nanowires was discussed. Furthermore, field emission measurements showed a very low turn-on field at 1.2 V μm–1 and a high field-enhancement factor of 3368. This study shows that SiC nanowires on carbon fabric have potential applications in electronic devices and flat panel displays.
      Type
      Journal Article
      Series/Journal Title
      The journal of physical chemistry C
      Collections
      • MAE Journal Articles
      http://dx.doi.org/10.1021/jp3028935
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG