View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Mechanical and Aerospace Engineering (MAE)
      • MAE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      The development of silk fibroin scaffolds using an indirect rapid prototyping approach : morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography

      Thumbnail
      Author
      Liu, M. J. J.
      Chou, Siaw Meng
      Chua, C. K.
      Tay, B. C. M.
      Ng, B. K.
      Date of Issue
      2011
      School
      School of Mechanical and Aerospace Engineering
      Abstract
      To date, naturally derived biomaterials are rarely used in advanced tissue engineering (TE) methods despite their superior biocompatibility. This is because these native materials, which consist mainly of proteins and polysaccharides, do not possess the ability to withstand harsh processing conditions. Unlike synthetic polymers, natural materials degrade and decompose rapidly in the presence of chemical solvents and high temperature, respectively. Thus, the fabrication of tissue scaffolds using natural biomaterials is often carried out using conventional techniques, where the efficiency in mass transport of nutrients and removal of waste products within the construct is compromised. The present study identified silk fibroin (SF) protein as a suitable material for the application of rapid prototyping (RP) or additive manufacturing (AM) technology. Using the indirect RP method, via the use of a mould, SF tissue scaffolds with both macro- and micro-morphological features can be produced and qualitatively examined by spectral-domain optical coherence tomography (SD-OCT). The advanced imaging technique showed the ability to differentiate the cells and SF material by producing high contrasting images, therefore suggesting the method as a feasible alternative to the histological analysis of cell growth within tissue scaffolds.
      Subject
      Mechanical and Aerospace Engineering
      Type
      Journal Article
      Series/Journal Title
      Medical engineering & physics
      Collections
      • MAE Journal Articles
      http://dx.doi.org/10.1016/j.medengphy.2011.09.029
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG