Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/99777
Title: Tailoring the radiation tolerance of vanadate–phosphate fluorapatites by chemical composition control
Authors: Lu, Fengyuan
Dong, Zhili
Zhang, Jiaming
White, Timothy John
Ewing, Rodney C.
Lian, Jie
Keywords: DRNTU::Engineering::Materials
Issue Date: 2013
Source: Lu, F., Dong, Z., Zhang, J., White, T. J., Ewing, R. C., & Lian, J. (2013). Tailoring the radiation tolerance of vanadate–phosphate fluorapatites by chemical composition control. RSC advances, 3(35), 15178-15184.
Series/Report no.: RSC advances
Abstract: The apatite-type structure of AI4AII6(BO4)6(OH, F, Cl)2 (AI, AII = Ca, Na, rare earths, fission product elements such as I and Tc, and/or actinides; B = Si, P, V, or Cr) offers unique structural advantages as an advanced nuclear waste form because a wide variety of actinides and fission products can be incorporated into the structure through coupled cation and anion substitutions. However, apatite undergoes a radiation-induced crystalline-to-amorphous transition, and previously, the effect of composition on the radiation-induced transformation has not been well understood. In this study, we demonstrate that vanadate–phosphate fluorapatite's radiation tolerance can be controlled by varying the composition. Enhanced radiation tolerance is achieved by replacing vanadium with phosphorus at the B-site or by replacing Pb with Ca at the A-site. Correlations among chemical composition, radiation performance and electronic to nuclear stopping power ratio were demonstrated and suggest that the ionization process resulting from electronic energy loss may enhance annealing of defects upon radiation damage.
URI: https://hdl.handle.net/10356/99777
http://hdl.handle.net/10220/17738
ISSN: 2046-2069
DOI: 10.1039/c3ra42246a
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MSE Journal Articles

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.