View Item 
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Characteristic vibration patterns of odor compounds from bread-baking volatiles upon protein binding : density functional and ONIOM study and principal component analysis

      Thumbnail
      Author
      Treesuwan, Witcha
      Hirao, Hajime
      Morokuma, Keiji
      Hannongbua, Supa
      Date of Issue
      2011
      School
      School of Physical and Mathematical Sciences
      Abstract
      As the mechanism underlying the sense of smell is unclear, different models have been used to rationalize structure–odor relationships. To gain insight into odorant molecules from bread baking, binding energies and vibration spectra in the gas phase and in the protein environment [7-transmembrane helices (7TMHs) of rhodopsin] were calculated using density functional theory [B3LYP/6-311++G(d,p)] and ONIOM [B3LYP/6-311++G(d,p):PM3] methods. It was found that acetaldehyde (“acid” category) binds strongly in the large cavity inside the receptor, whereas 2-ethyl-3-methylpyrazine (“roasted”) binds weakly. Lys296, Tyr268, Thr118 and Ala117 were identified as key residues in the binding site. More emphasis was placed on how vibrational frequencies are shifted and intensities modified in the receptor protein environment. Principal component analysis (PCA) suggested that the frequency shifts of C–C stretching, CH3 umbrella, C = O stretching and CH3 stretching modes have a significant effect on odor quality. In fact, the frequency shifts of the C–C stretching and C = O stretching modes, as well as CH3 umbrella and CH3 symmetric stretching modes, exhibit different behaviors in the PCA loadings plot. A large frequency shift in the CH3 symmetric stretching mode is associated with the sweet-roasted odor category and separates this from the acid odor category. A large frequency shift of the C–C stretching mode describes the roasted and oily-popcorn odor categories, and separates these from the buttery and acid odor categories.
      Subject
      DRNTU::Science::Chemistry
      Type
      Journal Article
      Series/Journal Title
      Journal of molecular modeling
      Collections
      • SPMS Journal Articles
      http://dx.doi.org/10.1007/s00894-011-1227-9
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG