View Item 
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth : a new class of anode for high-performance lithium-ion batteries

      Thumbnail
      Author
      Xiong, Qinqin
      Tu, Jiangping
      Xia, Xinhui
      Zhao, Xu-yang
      Gu, Changdong
      Wang, Xiuli
      Date of Issue
      2013
      School
      School of Physical and Mathematical Sciences
      Abstract
      A Fe2O3@NiO core/shell nanorod array on carbon cloth was prepared with the aid of hydrothermal synthesis combined with subsequent chemical bath deposition. The resultant array structure is composed of Fe2O3 nanorods as the core and interconnected ultrathin NiO nanoflakes as the shell. As an anode material for lithium-ion batteries, the heterostructured array electrode delivers a high discharge capacity of 1047.2 mA h g−1 after 50 cycles at 200 mA g−1, and 783.3 mA h g−1 at a high current density of 2000 mA g−1. The excellent electrochemical performance is attributed to the unique 3D core/shell nanorod array architecture and a rational combination of two electrochemical active materials. Our growth approach offers a simple and effective technique for the design and synthesis of a transition metal oxide hierarchical array that is promising for high-performance electrochemical energy storage.
      Subject
      DRNTU::Science::Chemistry
      Type
      Journal Article
      Series/Journal Title
      Nanoscale
      Collections
      • SPMS Journal Articles
      http://dx.doi.org/10.1039/c3nr02258g
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG