Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/96726
Title: Adsorption desalination : an emerging low-cost thermal desalination method
Authors: Ng, Kim Choon
Thu, Kyaw
Kim, Youngdeuk
Chakraborty, Anutosh
Amy, Gary
Keywords: DRNTU::Engineering::Mechanical engineering
Issue Date: 2013
Source: Ng, K. C., Thu, K., Kim, Y., Chakraborty, A., & Amy, G. (2013). Adsorption desalination : An emerging low-cost thermal desalination method. Desalination, 308, 161-179.
Series/Report no.: Desalination
Abstract: Desalination, other than the natural water cycle, is hailed as the panacea to alleviate the problems of fresh water shortage in many water stressed countries. However, the main drawback of conventional desalination methods is that they are energy intensive. In many instances, they consumed electricity, chemicals for pre- and post-treatment of water. For each kWh of energy consumed, there is an unavoidable emission of Carbon Dioxide (CO2) at the power stations as well as the discharge of chemically-laden brine into the environment. Thus, there is a motivation to find new direction or methods of desalination that consumed less chemicals, thermal energy and electricity. This paper describes an emerging and yet low cost method of desalination that employs only low-temperature waste heat, which is available in abundance from either the renewable energy sources or exhaust of industrial processes. With only one heat input, the Adsorption Desalination (AD) cycle produces two useful effects, i.e., high grade potable water and cooling. In this article, a brief literature review, the theoretical framework for adsorption thermodynamics, a lumped-parameter model and the experimental tests for a wide range of operational conditions on the basic and the hybrid AD cycles are discussed. Predictions from the model are validated with measured performances from two pilot plants, i.e., a basic AD and the advanced AD cycles. The energetic efficiency of AD cycles has been compared against the conventional desalination methods. Owing to the unique features of AD cycle, i.e., the simultaneous production of dual useful effects, it is proposed that the life cycle cost (LCC) of AD is evaluated against the LCC of combined machines that are needed to deliver the same quantities of useful effects using a unified unit of $/MWh. In closing, an ideal desalination system with zero emission of CO2 is presented where geo-thermal heat is employed for powering a temperature-cascaded cogeneration plant.
URI: https://hdl.handle.net/10356/96726
http://hdl.handle.net/10220/18076
ISSN: 0011-9164
DOI: http://dx.doi.org/10.1016/j.desal.2012.07.030
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MAE Journal Articles

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.