Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/101312
Title: Improved time complexities for learning boolean networks
Authors: Zheng, Yun.
Kwoh, Chee Keong.
Keywords: DRNTU::Engineering::Computer science and engineering
Issue Date: 2013
Source: Zheng, Y., & Kwoh, C. K. (2013). Improved time complexities for learning boolean networks. Entropy, 15(9), 3762-3795.
Series/Report no.: Entropy
Abstract: Existing algorithms for learning Boolean networks (BNs) have time complexities of at least O(N · n0:7(k+1)), where n is the number of variables, N is the number of samples and k is the number of inputs in Boolean functions. Some recent studies propose more efficient methods with O(N · n2) time complexities. However, these methods can only be used to learn monotonic BNs, and their performances are not satisfactory when the sample size is small. In this paper, we mathematically prove that OR/AND BNs, where the variables are related with logical OR/AND operations, can be found with the time complexity of O(k·(N+ logn)·n2), if there are enough noiseless training samples randomly generated from a uniform distribution. We also demonstrate that our method can successfully learn most BNs, whose variables are not related with exclusive OR and Boolean equality operations, with the same order of time complexity for learning OR/AND BNs, indicating our method has good efficiency for learning general BNs other than monotonic BNs. When the datasets are noisy, our method can still successfully identify most BNs with the same efficiency. When compared with two existing methods with the same settings, our method achieves a better comprehensive performance than both of them, especially for small training sample sizes. More importantly, our method can be used to learn all BNs. However, of the two methods that are compared, one can only be used to learn monotonic BNs, and the other one has a much worse time complexity than our method. In conclusion, our results demonstrate that Boolean networks can be learned with improved time complexities.
URI: https://hdl.handle.net/10356/101312
http://hdl.handle.net/10220/18392
ISSN: 1099-4300
DOI: http://dx.doi.org/10.3390/e15093762
Rights: © 2013 The Authors, licensee MDPI. This paper was published in Entropy and is made available as an electronic reprint (preprint) with permission of the authors. The paper can be found at the following official DOI: [http://dx.doi.org/10.3390/e15093762]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Journal Articles

Files in This Item:
File Description SizeFormat 
Improved Time Complexities for Learning Boolean Networks.pdf1.26 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.