Compact surface plasmon-enhanced fluorescence biochip
Author
Toma, Koji
Vala, Milan
Adam, Pavel
Homola, Jiří
Knoll, Wolfgang
Dostálek, Jakub
Date of Issue
2013School
School of Materials Science and Engineering
Version
Published version
Abstract
A new concept of compact biochip for surface plasmon-enhanced fluorescence assays is reported. It takes advantage of the amplification of fluorescence signal through the coupling of fluorophore labels with confined and strongly enhanced field intensity of surface plasmons. In order to efficiently excite and collect the emitted fluorescence light via surface plasmons on a metallic sensor surface, (reverse) Kretschmann configuration is combined with diffractive optical elements embedded on the chip surface. These include a concentric relief grating for the imaging of highly directional surface plasmon-coupled emission to a detector. Additional linear grating is used for the generating of surface plasmons at the excitation wavelength on the sensor surface in order to increase the fluorescence excitation rate. The reported approach offers the increased intensity of fluorescence signal, reduced background, and compatibility with nanoimprint lithography for cost-effective preparation of sensor chip. The presented approach was implemented for biosensing in a model immunoassay experiment in which the limit of detection of 11 pM was achieved.
Subject
DRNTU::Engineering::Materials
Type
Journal Article
Series/Journal Title
Optics express
Rights
© 2013 Optical Society of America. This paper was published in Optics Express and is made available as an electronic reprint (preprint) with permission of Optical Society of America. The paper can be found at the following official DOI: [http://dx.doi.org/10.1364/OE.21.010121]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Collections
http://dx.doi.org/10.1364/OE.21.010121
Get published version (via Digital Object Identifier)