View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Electrical and Electronic Engineering (EEE)
      • EEE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      The effect of microscopic texture on the direct plasma surface passivation of Si solar cells.

      Thumbnail
      the effect of microscopic texture on the direct plasma.pdf (1017.Kb)
      Author
      Mehrabian, S.
      Xu, S.
      Qaemi, A. A.
      Shokri, B.
      Chan, C. S.
      Ostrikov, K.
      Date of Issue
      2013
      School
      School of Electrical and Electronic Engineering
      National Institute of Education
      Version
      Published version
      Abstract
      Textured silicon surfaces are widely used in manufacturing of solar cells due to increasing the light absorption probability and also the antireflection properties. However, these Si surfaces have a high density of surface defects that need to be passivated. In this study, the effect of the microscopic surface texture on the plasma surface passivation of solar cells is investigated. The movement of 105 H+ ions in the texture-modified plasma sheath is studied by Monte Carlo numerical simulation. The hydrogen ions are driven by the combined electric field of the plasma sheath and the textured surface. The ion dynamics is simulated, and the relative ion distribution over the textured substrate is presented. This distribution can be used to interpret the quality of the Si dangling bonds saturation and consequently, the direct plasma surface passivation.
      Subject
      DRNTU::Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics
      Type
      Journal Article
      Series/Journal Title
      Physics of plasmas
      Rights
      © 2013 American Institue of Physics (AIP). This paper was published in Physics of Plasmas and is made available as an electronic reprint (preprint) with permission of AIP. The paper can be found at the following official DOI: [http://dx.doi.org/10.1063/1.4798527].  One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
      Collections
      • EEE Journal Articles
      http://dx.doi.org/10.1063/1.4798527
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG