View Item 
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Selective excitation of atomic-scale dynamics by coherent exciton motion in the non-born–Oppenheimer regime

      Thumbnail
      Selective Excitation of Atomic-Scale Dynamics by Coherent Exciton Motion in the Non-Born−Oppenheimer Regime.pdf (1.943Mb)
      Selective Excitation of Atomic-Scale Dynamics by Coherent Exciton Motion in the Non-Born−Oppenheimer Regime.pdf (1.943Mb)
      Author
      Nie, Zhaogang.
      Long, Run.
      Li, Jialin.
      Zheng, Yi Ying.
      Prezhdo, Oleg V.
      Loh, Zhi-Heng.
      Date of Issue
      2013
      School
      School of Physical and Mathematical Sciences
      Version
      Accepted version
      Abstract
      Time-domain investigations of the nonadiabatic coupling between electronic and vibrational degrees of freedom have focused primarily on the formation of electronic superpositions induced by atomic motion. The effect of electronic nonstationary-state dynamics on atomic motion remains unexplored. Here, phasecoherent excitation of the two lowest electronic transitions in semiconducting singlewalled carbon nanotubes by broadband <5-fs pulses directly triggers coherent exciton motion along the axis of the nanotubes. Optical pump−probe spectroscopy with sub-10-fs time resolution reveals that exciton motion selectively excites the high-frequency G mode coherent phonon, in good agreement with results obtained from time-domain ab initio simulations. This observed phenomenon arises from the direct modulation of the C−C interatomic potential by coherent exciton motion on a time scale that is commensurate with atomic motion. Our results suggest the possibility of employing light-field manipulation of electron densities in the non-Born−Oppenheimer regime to initiate selective atomic motion.
      Subject
      DRNTU::Science::Chemistry::Physical chemistry
      Type
      Journal Article
      Series/Journal Title
      The journal of physical chemistry letters
      Rights
      © 2013 American Chemical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by The Journal of Physical Chemistry Letters, American Chemical Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1021/jz401945m].
      Collections
      • SPMS Journal Articles
      http://dx.doi.org/10.1021/jz401945m
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG