dc.contributor.authorZhang, B.
dc.contributor.authorFermani, R.
dc.contributor.authorMüller, T.
dc.contributor.authorLim, M. J.
dc.contributor.authorDumke, Rainer Helmut
dc.identifier.citationZhang, B., Fermani, R., Müller, T., Lim, M. J., & Dumke, R. H. (2010). Design of magnetic traps for neutral atoms with vortices in type-II superconducting microstructures. Physical review A, 81(6), 063408-.en_US
dc.description.abstractWe design magnetic traps for atoms based on the average magnetic field of vortices induced in a type-II superconducting thin film. This magnetic field is the critical ingredient of the demonstrated vortex-based atom traps, which operate without transport current. We use Bean’s critical-state method to model the vortex field through mesoscopic supercurrents induced in the thin strip. The resulting inhomogeneous magnetic fields are studied in detail and compared to those generated by multiple normally conducting wires with transport currents. Various vortex patterns can be obtained by programing different loading-field and transport-current sequences. These variable magnetic fields are employed to make versatile trapping potentials.en_US
dc.description.sponsorshipASTAR (Agency for Sci., Tech. and Research, S’pore)en_US
dc.relation.ispartofseriesPhysical review Aen_US
dc.rights© 2010 The American Physical Society. This paper was published in Physical Review A and is made available as an electronic reprint (preprint) with permission of The American Physical Society. The paper can be found at the following official DOI: [http://dx.doi.org/10.1103/PhysRevA.81.063408]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.en_US
dc.titleDesign of magnetic traps for neutral atoms with vortices in type-II superconducting microstructuresen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.description.versionPublished versionen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record