dc.contributor.authorLin, Xiao
dc.contributor.authorWang, Zuojia
dc.contributor.authorGao, Fei
dc.contributor.authorZhang, Baile
dc.contributor.authorChen, Hongsheng
dc.date.accessioned2014-03-17T01:32:07Z
dc.date.available2014-03-17T01:32:07Z
dc.date.copyright2014en_US
dc.date.issued2014
dc.identifier.citationLin, X., Wang, Z., Gao, F., Zhang, B., & Chen, H. (2014). Atomically thin nonreciprocal optical isolation. Scientific Reports, 4, 1-5.en_US
dc.identifier.issn2045-2322en_US
dc.identifier.urihttp://hdl.handle.net/10220/18909
dc.description.abstractOptical isolators will play a critical role in next-generation photonic circuits, but their on-chip integration requires miniaturization with suitable nonreciprocal photonic materials. Here, we theoretically demonstrate the thinnest possible and polarization-selective nonreciprocal isolation for circularly polarized waves by using graphene monolayer under an external magnetic field. The underlying mechanism is that graphene electron velocity can be largely different for the incident wave propagating in opposite directions at cyclotron frequency, making graphene highly conductive and reflective in one propagation direction while transparent in the opposite propagation direction under an external magnetic field. When some practical loss is introduced, nonreciprocal isolation with graphene monolayer still possesses good performance in a broad bandwidth. Our work shows the first study on the extreme limit of thickness for optical isolation and provides theoretical guidance in future practical applications.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesScientific reportsen_US
dc.rights© 2014 Nature Publishing Group. This paper was published in Scientific Reports and is made available as an electronic reprint (preprint) with permission of Nature Publishing Group. The paper can be found at the following official DOI: [http://dx.doi.org/10.1038/srep04190].  One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.en_US
dc.subjectDRNTU::Engineering::Materials::Photonics and optoelectronics materials
dc.titleAtomically thin nonreciprocal optical isolationen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doihttp://dx.doi.org/10.1038/srep04190
dc.description.versionPublished versionen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record