dc.contributor.authorTang, Yuxin
dc.contributor.authorJiang, Zhelong
dc.contributor.authorXing, Guichuan
dc.contributor.authorLi, Anran
dc.contributor.authorKanhere, Pushkar D.
dc.contributor.authorZhang, Yanyan
dc.contributor.authorSum, Tze Chien
dc.contributor.authorLi, Shuzhou
dc.contributor.authorChen, Xiaodong
dc.contributor.authorDong, Zhili
dc.contributor.authorChen, Zhong
dc.date.accessioned2014-03-21T07:45:27Z
dc.date.available2014-03-21T07:45:27Z
dc.date.copyright2013en_US
dc.date.issued2013
dc.identifier.citationTang, Y., Jiang, Z., Xing, G., Li, A., Kanhere, P. D., Zhang, Y., et al. (2013). Efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processes. Advanced Functional Materials, 23(23), 2932-2940.en_US
dc.identifier.issn1616-301Xen_US
dc.identifier.urihttp://hdl.handle.net/10220/18947
dc.description.abstractPhoton-coupling and electron dynamics are the key processes leading to the photocatalytic activity of plasmonic metal-semiconductor nanohybrids. To better utilize and explore these effects, a facile large-scale synthesis route to form Ag@AgCl cubic cages with well-defined hollow interiors is carried out using a water-soluble sacrificial salt-crystal-template process. Theoretical calculations and experimental probes of the electron transfer process are used in an effort to gain insight into the underlying plasmonic properties of the Ag@AgCl materials. Efficient utilization of solar energy to create electron-hole pairs is attributed to the significant light confinement and enhancement around the Ag/AgCl interfacial plasmon hot spots and multilight-reflection inside the cage structure. More importantly, an ultrafast electron transfer process (≤150 fs) from Ag nanoparticles to the AgCl surface is detected, which facilitates the charge separation efficiency in this system, contributing to high photocatalytic activity and stability of Ag@AgCl photocatalyst towards organic dye degradation.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesAdvanced functional materialsen_US
dc.rights© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.en_US
dc.subjectDRNTU::Science::Chemistry::Physical chemistry
dc.titleEfficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processesen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Materials Science and Engineeringen_US
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doihttp://dx.doi.org/10.1002/adfm.201203379


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record