View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Civil and Environmental Engineering (CEE)
      • CEE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Civil and Environmental Engineering (CEE)
      • CEE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Submerged hollow fibre membrane filtration with transverse and longitudinal vibrations

      Thumbnail
      Main article (609.7Kb)
      Author
      Li, Tian (CEE)
      Law, Adrian Wing-Keung
      Fane, Anthony Gordon
      Date of Issue
      2013
      School
      School of Civil and Environmental Engineering
      Research Centre
      Singapore Membrane Technology Centre
      Version
      Accepted version
      Abstract
      A comparative study of transverse and longitudinal vibrations of submerged hollow fibre membranes for fouling control was carried out in this paper. The same membrane module was adopted in the comparison, and the reactor geometry was identical. The orientation between the vibration and membrane fibre directions was the only difference between the two. The feed suspensions included both inorganic Bentonite and organic yeast suspensions. The results showed that transverse vibrations were generally more effective in terms of fouling reduction even at a very low vibration frequency of 1 Hz, which may be attributed to the separating boundary layers and the associated secondary flows around the cylindrical membrane fibres. The difference between the two orientations was very substantial in Bentonite suspensions, but less so in yeast suspensions due to the main membrane foulants of cell debris in the yeast components which caused the pore blockage of the membrane. A small degree of fibre looseness was found to further improve membrane performance with transverse vibrations in both Bentonite and yeast suspensions due to additional lateral fibre movement. The effect of packing density of the membrane bundle in transverse vibrations was also examined. The results showed that at larger vibration amplitudes, a high packing density of fibres can be operated with little membrane fouling, which indicated that the secondary flow generated could overcome the strong permeate flux competition within the bundle under vibrations. Finally, vibration relaxation was tested experimentally in half-on/off switching mode with the energy reduction due directly to the 50% stoppage. The results showed that a short relaxation time interval was generally more favourable for fouling reduction.
      Subject
      DRNTU::Engineering::Environmental engineering::Water treatment
      Type
      Journal Article
      Series/Journal Title
      Journal of membrane science
      Rights
      © 2013 Elsevier B.V. This is the author created version of a work that has been peer reviewed and accepted for publication by Journal of membrane science, Elsevier B.V. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI: http://dx.doi.org/10.1016/j.memsci.2013.12.042].
      Collections
      • CEE Journal Articles
      http://dx.doi.org/10.1016/j.memsci.2013.12.042
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG