Exciton dissociation in the presence of phonons : a reduced hierarchy equations of motion approach
Author
Yao, Yao
Yang, Wenchao
Zhao, Yang
Date of Issue
2014School
School of Materials Science and Engineering
Version
Published version
Abstract
Combining the reduced hierarchy equations of motion (HEOM) approach with the Wigner-function formalism, we investigate nonperturbatively exciton dissociation under the influence of a phonon bath in an organic heterojunction. The exciton is modeled by an electron-hole pair with the electron moving in the presence of both an external electric field and the Coulomb attraction potential from the hole. In the absence of a phonon bath, calculated HEOM results reproduce those from the Onsager-Braun theory in weak electric fields. In the presence of a phonon bath, substantial deviations from the Onsager-Braun theory are found, signaling phonon-induced quantum effects. Furthermore, time evolution of the spatial current distribution is examined, and an initial spike followed by a polarity change of the transient photocurrent have been recovered.
Subject
DRNTU::Engineering::Materials::Biomaterials
Type
Journal Article
Series/Journal Title
The journal of chemical physics
Rights
© 2014 AIP Publishing LLC. This paper was published in The Journal of Chemical Physics and is made available as an electronic reprint (preprint) with permission of AIP Publishing LLC. The paper can be found at the following official DOI: [http://dx.doi.org/10.1063/1.4867418]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Collections
http://dx.doi.org/10.1063/1.4867418
Get published version (via Digital Object Identifier)