dc.contributor.authorLi, Jinming
dc.contributor.authorLiu, Fang
dc.contributor.authorShao, Qing
dc.contributor.authorMin, Yuanzeng
dc.contributor.authorCosta, Marianne
dc.contributor.authorYeow, Edwin K. L.
dc.contributor.authorXing, Bengang
dc.date.accessioned2014-04-10T04:18:45Z
dc.date.available2014-04-10T04:18:45Z
dc.date.copyright2014en_US
dc.date.issued2014
dc.identifier.citationLi, J., Liu, F., Shao, Q., Min, Y., Costa, M., Yeow, E. K. L., et al. (2014). Enzyme-Responsive Cell-Penetrating Peptide Conjugated Mesoporous Silica Quantum Dot Nanocarriers for Controlled Release of Nucleus-Targeted Drug Molecules and Real-Time Intracellular Fluorescence Imaging of Tumor Cells. Advanced Healthcare Materials, 3(8), 1230-1239.en_US
dc.identifier.issn2192-2640en_US
dc.identifier.urihttp://hdl.handle.net/10220/19217
dc.description.abstractHere, a set of novel and personalized nanocarriers are presented for controlled nucleus-targeted antitumor drug delivery and real-time imaging of intracellular drug molecule trafficking by integrating an enzyme activatable cell penetrating peptide (CPP) with mesoporous silica coated quantum dots nanoparticles. Upon loading of antitumor drug, doxorubicin (DOX) and further exposure to proteases in tumor cell environment, the enzymatic cleavage of peptide sequence activates oligocationic TAT residues on the QDs@mSiO2 surface and direct the DOX delivery into cellular nucleus. The systematic cell imaging and cytotoxicity studies confirm that the enzyme responsive DOX-loaded CPP-QDs@mSiO2 nanoparticles can selectively release DOX in the tumor cells with high cathepsin B enzyme expression and greatly facilitate DOX accumulation in targeted nucleus, thus exhibiting enhanced antitumor activity in these cells. As contrast, there is limited nuclear-targeted drug accumulation and lower tumor cytotoxicity observed in the cells without enzyme expression. More importantly, significant antitumor DOX accumulation and higher tumor inactivation is also found in the drug resistant tumor cells with targeted enzyme expression. Such simple and specific enzyme responsive mesoporous silica-QDs nanoconjugates provide great promise for rational design of targeted drug delivery into biological system, and may thus greatly facilitate the medical theranostics in the near future.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesAdvanced healthcare materialsen_US
dc.rights© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.en_US
dc.subjectDRNTU::Science::Chemistry::Biochemistry
dc.titleEnzyme-responsive cell-penetrating peptides conjugated mesoporous silica quantum dots nanocarriers for controlled release of nucleus-targeted drug molecules and real-time intracellular fluorescence imaging of tumor cellsen_US
dc.typeJournal Article
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doihttp://dx.doi.org/10.1002/adhm.201300613


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record