View Item 
      •   Home
      • 1. Schools
      • College of Science
      • School of Biological Sciences (SBS)
      • SBS Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Science
      • School of Biological Sciences (SBS)
      • SBS Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Biofouling in reverse osmosis processes : the roles of flux, crossflow velocity and concentration polarization in biofilm development

      Thumbnail
      S R Suwarno et al - JMS accepted manuscript (2).pdf (814.8Kb)
      Author
      Suwarno, S. R.
      Chen, X.
      Chong, T. H.
      McDougald, D.
      Cohen, Y.
      Rice, S. A.
      Fane, Anthony Gordon
      Date of Issue
      2014
      School
      School of Civil and Environmental Engineering
      School of Biological Sciences
      Research Centre
      Singapore Membrane Technology Centre
      Version
      Accepted Version
      Abstract
      Biofilm development in a spacer-filled reverse osmosis membrane channel can influence both trans-membrane pressure (TMP) and channel pressure drop (ΔPCH). While current pretreatment methods are unable to completely tackle the biofouling problem, more insights are required to provide strategies to minimize the problem. This study examined the role of operating parameters (i.e. flux and crossflow velocity) to minimize biofouling in RO processes. The experiments were conducted with a lab-scale high pressure flat sheet RO reactor where changes in pressure drop along the channel and across the membrane were measured. The impact of biofouling was measured at constant fluxes, where the TMP rise and ΔPCH rise and the biofoulant was quantified as biovolumes of live and dead bacteria on autopsied membrane and spacer samples by confocal laser scanning microscopy (CLSM). The results show that TMP rise increased exponentially with increasing flux, and decreased with increasing crossflow velocity. The channel pressure drop, ΔPCH, increased when either flux or crossflow velocity was increased, and was more dependent on crossflow. The biofoulant volume on the membrane increased with flux and was less dependent on crossflow. The biofoulant associated with the spacer was much less than on the membrane and relatively insensitive to flux or crossflow velocity. The TMP rise could be correlated with the estimated concentration of nutrient at the membrane surface, Cw,N, highlighting the combined roles of flux and crossflow velocity in solute concentration polarization. Previous TMP rise data could also be correlated to the estimated Cw,N values. This observation suggests a biofouling mitigation strategy by controlling both incoming nutrient concentration and operating conditions (flux and crossflow).
      Subject
      DRNTU::Science::Biological sciences
      Type
      Journal Article
      Series/Journal Title
      Journal of membrane science
      Rights
      © 2014 Elsevier. This is the author created version of a work that has been peer reviewed and accepted for publication by Journal of Membrane Science, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/ 10.1016/j.memsci.2014.04.052].
      Collections
      • CEE Journal Articles
      • SBS Journal Articles
      http://dx.doi.org/10.1016/j.memsci.2014.04.052
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG