View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Computer Science and Engineering (SCSE)
      • SCSE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Cooperative reinforcement learning in topology-based multi-agent systems

      Thumbnail
      Author
      Xiao, Dan
      Tan, Ah-Hwee
      Date of Issue
      2011
      School
      School of Computer Engineering
      Abstract
      Topology-based multi-agent systems (TMAS), wherein agents interact with one another according to their spatial relationship in a network, are well suited for problems with topological constraints. In a TMAS system, however, each agent may have a different state space, which can be rather large. Consequently, traditional approaches to multi-agent cooperative learning may not be able to scale up with the complexity of the network topology. In this paper, we propose a cooperative learning strategy, under which autonomous agents are assembled in a binary tree formation (BTF). By constraining the interaction between agents, we effectively unify the state space of individual agents and enable policy sharing across agents. Our complexity analysis indicates that multi-agent systems with the BTF have a much smaller state space and a higher level of flexibility, compared with the general form of n-ary (n > 2) tree formation. We have applied the proposed cooperative learning strategy to a class of reinforcement learning agents known as temporal difference-fusion architecture for learning and cognition (TD-FALCON). Comparative experiments based on a generic network routing problem, which is a typical TMAS domain, show that the TD-FALCON BTF teams outperform alternative methods, including TD-FALCON teams in single agent and n-ary tree formation, a Q-learning method based on the table lookup mechanism, as well as a classical linear programming algorithm. Our study further shows that TD-FALCON BTF can adapt and function well under various scales of network complexity and traffic volume in TMAS domains.
      Subject
      DRNTU::Engineering::Computer science and engineering
      Type
      Journal Article
      Series/Journal Title
      Autonomous agents and multi-agent systems
      Rights
      © 2011 The Author(s).
      Collections
      • SCSE Journal Articles
      http://dx.doi.org/10.1007/s10458-011-9183-4
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG