Please use this identifier to cite or link to this item:
Title: Magnetic phases in the S=1 Shastry-Sutherland model with uniaxial anisotropy
Authors: Su, Lei
Wierschem, Keola
Sengupta, Pinaki
Keywords: DRNTU::Science::Physics
Issue Date: 2014
Source: Su, L., Wierschem, K., & Sengupta, P. (2014). Magnetic phases in the S=1 Shastry-Sutherland model with uniaxial anisotropy. Physical Review B, 89, 245432-.
Series/Report no.: Physical review B (condensed matter and materials physics)
Abstract: We explore the field-induced magnetic phases of an S=1 XXZ model with single-ion anisotropy and large Ising-like anisotropy on a Shastry-Sutherland lattice over a wide range of Hamiltonian parameters and applied magnetic field. The multitude of ground-state phases are characterized in detail in terms of their thermodynamic properties, and the underlying classical (Ising limit) spin arrangements for the plateau phases are identified by calculating the static structure factors. The enlarged local Hilbert space of the S=1 spins results in several ground state phases that are not realized for S=1/2 spins. These include the quantum paramagnetic state that is ubiquitous to S=1 spins with single-ion anisotropy, two different spin supersolid phases (with distinct longitudinal ordering), and a magnetization plateau that arises as a direct descendant of the 1/3 plateau due to quantum fluctuations that are not possible for S=1/2 spins. We predict the same mechanism will lead to plateaus at smaller fractions of 1/3 for higher spins. The full momentum dependence of the longitudinal and transverse components of the static structure factor is calculated in the spin supersolid phase to demonstrate the simultaneous existence of diagonal and off-diagonal long-range order as well as the different longitudinal orderings.
DOI: 10.1103/PhysRevB.89.245432
Rights: © 2014 American Physical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by Physical Review B, American Physical Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Journal Articles

Files in This Item:
File Description SizeFormat 
manuscript.pdf683.77 kBAdobe PDFThumbnail

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.