View Item 
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Science
      • School of Physical and Mathematical Sciences (SPMS)
      • SPMS Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Magnetic phases in the S=1 Shastry-Sutherland model with uniaxial anisotropy

      Thumbnail
      manuscript.pdf (683.7Kb)
      Author
      Su, Lei
      Wierschem, Keola
      Sengupta, Pinaki
      Date of Issue
      2014
      School
      School of Physical and Mathematical Sciences
      Version
      Accepted version
      Abstract
      We explore the field-induced magnetic phases of an S=1 XXZ model with single-ion anisotropy and large Ising-like anisotropy on a Shastry-Sutherland lattice over a wide range of Hamiltonian parameters and applied magnetic field. The multitude of ground-state phases are characterized in detail in terms of their thermodynamic properties, and the underlying classical (Ising limit) spin arrangements for the plateau phases are identified by calculating the static structure factors. The enlarged local Hilbert space of the S=1 spins results in several ground state phases that are not realized for S=1/2 spins. These include the quantum paramagnetic state that is ubiquitous to S=1 spins with single-ion anisotropy, two different spin supersolid phases (with distinct longitudinal ordering), and a magnetization plateau that arises as a direct descendant of the 1/3 plateau due to quantum fluctuations that are not possible for S=1/2 spins. We predict the same mechanism will lead to plateaus at smaller fractions of 1/3 for higher spins. The full momentum dependence of the longitudinal and transverse components of the static structure factor is calculated in the spin supersolid phase to demonstrate the simultaneous existence of diagonal and off-diagonal long-range order as well as the different longitudinal orderings.
      Subject
      DRNTU::Science::Physics
      Type
      Journal Article
      Series/Journal Title
      Physical review B (condensed matter and materials physics)
      Rights
      © 2014 American Physical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by Physical Review B, American Physical Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1103/PhysRevB.89.245432].
      Collections
      • SPMS Journal Articles
      http://dx.doi.org/10.1103/PhysRevB.89.245432
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG