View Item 
      •   Home
      • 2. Research Centres and Institutes
      • Robotics Research Centre (RRC)
      • RRC Journal Articles
      • View Item
      •   Home
      • 2. Research Centres and Institutes
      • Robotics Research Centre (RRC)
      • RRC Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Design optimization of a cable-driven two-DOF flexible joint module

      Thumbnail
      41256.pdf (710.8Kb)
      Author
      Zhang, Zhao
      Date of Issue
      2012
      Research Centre
      Robotics Research Centre
      Version
      Published version
      Abstract
      This paper focuses on the kinematics, kinetostatics and design optimization of a 2-DOF cable-driven flexible joint module. Based on the motion characteristics of the 2-DOF joint module, the concept of instantaneous screw axis in conjunction with the Product-Of-Exponentials (POE) formula is proposed to formulate its kinematic model. However, as the instantaneous screw axis is unfixed, the Lie group method is employed to derive the instantaneous kinematic model of the joint module. In order to generate the feasible workspace subject to positive tension constraint, the kinetostatics of the joint module is addressed, where the stiffness resulting from both the driving cables and the flexible backbone are considered. A numerical orientation workspace evaluation method is proposed based on an equi-volumetric partition in its parametric space and the volume-element associated integral factor. A global singular value (GSV) index, which considers the minimum singular value of the stiffness matrix of joint module over the achievable workspace, is employed to optimize the geometric size of joint module. The simulation results demonstrate the effectiveness of the proposed GSV optimization algorithm.
      Subject
      DRNTU::Engineering::Bioengineering
      Type
      Journal Article
      Series/Journal Title
      International journal of advanced robotic systems
      Rights
      © 2012 Zhang; licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
      Collections
      • RRC Journal Articles
      http://dx.doi.org/10.5772/53669
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG