Please use this identifier to cite or link to this item:
Title: Toward broadband vibration-based energy harvesting
Authors: Tang, Lihua
Yang, Yaowen
Soh, Chee Kiong
Keywords: DRNTU::Engineering::Materials::Energy materials
Issue Date: 2010
Source: Tang, L., Yang, Y., & Soh, C. K. (2010). Toward broadband vibration-based energy harvesting. Journal of intelligent material systems and structures, 21(18), 1867-1897.
Series/Report no.: Journal of intelligent material systems and structures
Abstract: The dramatic reduction in power consumption of current integrated circuits has evoked great research interests in harvesting ambient energy, such as vibrations, as a potential power supply for electronic devices to avoid battery replacement. Currently, most vibration-based energy harvesters are designed as linear resonators to achieve optimal performance by matching their resonance frequencies with the ambient excitation frequencies a priori. However, a slight shift of the excitation frequency will cause a dramatic reduction in performance. Unfortunately, in the vast majority of practical cases, the ambient vibrations are frequency-varying or totally random with energy distributed over a wide frequency spectrum. Hence, developing techniques to increase the bandwidth of vibration-based energy harvesters has become the next important problem in energy harvesting. This article reviews the advances made in the past few years on this issue. The broadband vibration-based energy harvesting solutions, covering resonance tuning, multimodal energy harvesting, frequency up-conversion, and techniques exploiting non-linear oscillations, are summarized in detail with regard to their merits and applicability in different circumstances.
ISSN: 1045-389X
DOI: 10.1177/1045389X10390249
Rights: © 2010 The Author(s). This is the author created version of a work that has been peer reviewed and accepted for publication by Journal of Intelligent Material Systems and Structures, the Author(s). It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI:].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:CEE Journal Articles

Files in This Item:
File Description SizeFormat 
Towards Broadband Vibration-based Energy Harvesting-JIMSS-R3.pdfMain article3 MBAdobe PDFThumbnail

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.