View Item 
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Journal Articles
      • View Item
      •   Home
      • 1. Schools
      • College of Engineering
      • School of Materials Science and Engineering (MSE)
      • MSE Journal Articles
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.
      Subject Lookup

      Browse

      All of DR-NTUCommunities & CollectionsTitlesAuthorsBy DateSubjectsThis CollectionTitlesAuthorsBy DateSubjects

      My Account

      Login

      Statistics

      Most Popular ItemsStatistics by CountryMost Popular Authors

      About DR-NTU

      Ultra-fine pitch palladium-coated copper wire bonding : effect of bonding parameters

      Thumbnail
      Ultra-fine pitch palladium-coated copper wire bonding effect of bonding parameters.pdf (873.2Kb)
      Author
      Lim, Adeline B. Y.
      Chang, Andrew C. K.
      Yauw, Oranna
      Chylak, Bob
      Gan, Chee Lip
      Chen, Zhong
      Date of Issue
      2014
      School
      School of Materials Science and Engineering
      Version
      Accepted version
      Abstract
      Copper (Cu) wire bonding has become a mainstream IC assembly solution due to its significant cost savings over gold wire. However, concerns on corrosion susceptibility and package reliability have driven the industry to develop alternative materials. In recent years, palladium-coated copper (PdCu) wire has become widely used as it is believed to improve reliability. In this paper, we experimented with 0.6 ml PdCu and bare Cu wires. Palladium distribution and grain structure of the PdCu Free Air Ball (FAB) were investigated. It was observed that Electronic Flame Off (EFO) current and the cover gas type have a significant effect on palladium distribution in the FAB. The FAB hardness was measured and correlated to palladium distribution and grain structure. First bond process responses were characterized. The impact of palladium on wire bondability and wire bond intermetallic using a high temperature storage test was studied.
      Subject
      DRNTU::Engineering::Materials::Electronic packaging materials
      Type
      Journal Article
      Series/Journal Title
      Microelectronics reliability
      Rights
      © 2014 Elsevier Ltd. This is the author created version of a work that has been peer reviewed and accepted for publication by Microelectronics Reliability, Elsevier Ltd. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1016/j.microrel.2014.05.005].
      Collections
      • MSE Journal Articles
      http://dx.doi.org/10.1016/j.microrel.2014.05.005
      Get published version (via Digital Object Identifier)

      Show full item record


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       


      NTU Library, Nanyang Avenue, Singapore 639798 © 2011 Nanyang Technological University. All rights reserved.
      DSpace software copyright © 2002-2015  DuraSpace
      Contact Us | Send Feedback
      Share |    
      Theme by 
      Atmire NV
       

       

      DCSIMG